Common Algebra Errors

Terms vs. Factor errors
Many properties apply only to terms or only to factors. Be clear on which is which.
(1)
$(a b)^{n}=a^{n} b^{n}$
but
$(a+b)^{n} \neq a^{n}+b^{n}$
powers do not "distribute over addition"
(2) $\sqrt{a b}=\sqrt{a} \sqrt{b}$
but
$\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$
cannot "take root term by term"
(3) $\frac{3 a^{-2} b}{c}=\frac{3 b}{a^{2} c} \quad$ but $\quad \frac{3 a^{-2}+b}{c} \neq \frac{3+b}{a^{2} c}$
factors "jump fraction bar" to change sign of exponent terms do not
(4) $\frac{2 x y}{5 x}=\frac{2 x y}{5 x}=\frac{2 y}{5} \quad$ but
factors divide out

$$
=1
$$

- $2 x+$

$$
\frac{2 x+y}{5 x} \neq \frac{2 x+y}{5 x}
$$

(5) $3(x+y)=3 x+3 y$
"multiplication distributes over addition"
terms do not "cancel"

$$
10(0.2 x) \neq 10(0.2) \bullet 10 x
$$

but mult does not "distribute over mult" instead, the associative law applies

$$
10(0.2 x)=(10 \bullet 0.2) x=2 x
$$

Missing or "invisible" parenthesis

$$
\begin{equation*}
(-3)^{2}=(-3)(-3)=9 \quad \text { is not the same as } \quad-3^{2} \tag{6}
\end{equation*}
$$

$$
-3^{2}=-(3)^{2}=-(3 \cdot 3)=-9
$$

(7) $\quad(5 x)^{-2}=\frac{1}{(5 x)^{2}}=\frac{1}{25 x^{2}}$ is not the same as $5 x^{-2}$

$$
\text { is not the same as } \quad x+2(x+1)
$$

$$
5 x^{-2}=5 \cdot x^{-2}=5 \cdot \frac{1}{x^{2}}=\frac{5}{x^{2}}
$$

(9) $3 x-(x+1)$
is not the same as $\quad 3 x-x+1$

Square roots and Absolute Values

(10) $\sqrt{16}=4$ not ± 4
(11) If $x^{2}=49$ then $x= \pm \sqrt{49}= \pm 7$ not just 7 .
(12) $\sqrt{x^{2}}=|x|$ not just x

Name:
Answer True or False. If the answer is false, tell which algebra error is made (according to the given notes) and give the correct simplification/solutions

1) $\sqrt{x^{2}+16}=x+4$
2) $(\sqrt{x}+3)^{2}=x+3 \sqrt{x}+9$
3) $\frac{x^{2} y-x}{x^{2}(x+4)}=\frac{y-x}{x+4}$
4) $\sqrt{25}= \pm 5$
5) $(x+2)^{3}=x^{3}+8$
6) If $x^{2}=32$ then $x=4 \sqrt{2}$
7) $7 x^{-2} y=\frac{7 y}{x^{2}}$
8) $\sqrt{(x-2)^{2}}=x-2$
9) $\quad \frac{4 y^{-2}-x}{y}=\frac{4-x}{y^{3}}$
10) $\sqrt{a^{2}+9 b^{2}}=a+3 b$
