Terms vs. Factor errors Many properties apply only to terms or only to factors. Be clear on which is which.			
(1)	$(ab)^n = a^n b^n$	but	$(a+b)^n \neq a^n + b^n$
			powers do not "distribute over addition"
(2)	$\sqrt{ab} = \sqrt{a}\sqrt{b}$	but	$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$
	$2a^{-2}b$ 2b		$3a^{-2} + b + 3 + b$
(3)	$\frac{3a}{c} = \frac{3b}{a^2c}$	but	$\frac{3a^2 + b}{c} \neq \frac{3 + b}{a^2 c}$
factors "jump fraction bar" to change sign of exponent terms do not			
(4)	$\frac{2xy}{x} = \frac{2xy}{x} = \frac{2}{x}$	y but	$\frac{2x+y}{2x+y} \neq \frac{2x+y}{2x+y}$
(¬)	5x 5x 5	5 Dat	5x $5x$
$\frac{10(0.2r) \neq 10(0.2) = 10r}{10}$			
"multiplication distributes over addition" but mult does not "distribute over mult"			
		instead	d, the associative law applies
			$10(0.2x) = (10 \bullet 0.2)x = 2x$
Missing or "invisible" parenthesis			
(6)	$(-3)^2 = (-3)(-3)$	= 9 is not the same as	-3^{2}
			$-3^2 = -(3)^2 = -(3 \bullet 3) = -9$
(7)	$(5x)^{-2} = \frac{1}{(5x)^2} = \frac{1}{(5x)^2}$	$=\frac{1}{25x^2}$ is not the same as	$5x^{-2}$
			$5x^{-2} = 5 \bullet x^{-2} = 5 \bullet \frac{1}{x^2} = \frac{5}{x^2}$
(8)	(x+2)(x+1)	is not the same as	x+2(x+1)
(9)	3x-(x+1)	is not the same as	3x-x+1
Square roots and Absolute Values			
(10) $\sqrt{16} = 4$ not ± 4			

(11) If $x^2 = 49$ then x = $\pm \sqrt{49} = \pm 7$ not just 7.

(12) $\sqrt{x^2} = |x|$ not just x

Common Algebra Errors

Name: _____

Answer True or False. If the answer is false, tell which algebra error is made (according to the given notes) and give the correct simplification/solutions

1)
$$\sqrt{x^2 + 16} = x + 4$$

2) $(\sqrt{x} + 3)^2 = x + 3\sqrt{x} + 9$ ______
3) $\frac{x^2y - x}{x^2(x+4)} = \frac{y - x}{x+4}$ ______
4) $\sqrt{25} = \pm 5$ ______
5) $(x+2)^3 = x^3 + 8$ ______
6) If $x^2 = 32$ then $x = 4\sqrt{2}$ _____
7) $7x^{-2}y = \frac{7y}{x^2}$ _____
8) $\sqrt{(x-2)^2} = x - 2$ ______
9) $\frac{4y^{-2} - x}{y} = \frac{4 - x}{y^3}$ _____
10) $\sqrt{a^2 + 9b^2} = a + 3b$ ______